Продавец ТОО "LINX" развивает свой бизнес на Satu.kz 12 лет.
Знак PRO означает, что продавец пользуется одним из платных пакетов услуг Satu.kz с расширенными функциональными возможностями.
Сравнить возможности действующих пакетов
Начать продавать на Satu.kz
Спецодежда по выгодным ценам и пошив на заказВыбрать
+7 (707) 292-29-66
+7 (702) 222-24-34
+7 (727) 354-64-28
ул.Жансугурова, 311, Алматы, Казахстан
Спецодежда от компании «LINX»

История появления респираторов

Первые разработки

Первые упоминания о респираторах можно найти в XVI веке, в работах Леонардо да Винчи, который предлагал использовать для защиты от изобретённого им оружия — токсичного порошка — смоченную ткань. В 1799 году Александр Гумбольд разработал первый примитивный респиратор, когда он работал в Пруссии горным инженером.

Практически все старинные респираторы состояли из мешка, который полностью закрывал голову, застёгивался на горле и имел окна, через которые можно было смотреть. Некоторые респираторы были сделаны из резины, некоторые — из прорезиненной ткани, другие — из пропитанной ткани, и в большинстве случаев рабочий переносил бак со «слабо сжатым» воздухом, который использовался для дыхания. В некоторых устройствах использовалась адсорбция углекислого газа, и воздух вдыхался неоднократно, в других выдыхаемый воздух выпускался наружу через клапан выдоха.

Первый патент на фильтрующий респиратор в США получил Льюис Хаслетт в 1848 году. Этот респиратор фильтровал воздух, очищая его от пыли. Для фильтрации использовались фильтры из смоченной шерсти или аналогичное пористое вещество. После этого было выдано много других патентов на респираторы, в которых для очистки воздуха использовалось хлопковое волокно, а также активированный уголь и известь для поглощения вредных газов, и были сделаны улучшения смотровых окон. В 1879 году Хадсон Хёрт запатентовал чашеобразный респиратор, похожий на те, которые широко используются в промышленности в настоящее время. Его фирма продолжала выпуск респираторов до 1970-х годов.

Фильтрующие респираторы изобретали и в Европе. Джон Стенхауз, шотландский химик, изучал разные виды активированного угля, чтобы узнать, какие из них лучше улавливают вредные газы. Он проложил дорогу к применению активированного угля для фильтрации воздуха в респираторах, разработав первый такой респиратор. Сейчас активированный уголь широко используется в противогазах. В 1871 году английский физик Джон Тиндал добавил к респиратору Стенхауза фильтр из шерсти, насыщенный гидрооксидом кальция, глицерином и углём, и стал изобретателем «пожарного респиратора». Этот респиратор улавливал и дым, и вредные газы, и он был показан Королевскому (научному) обществу в Лондоне в 1874 году. Также в 1874 году Самюэль Бартон запатентовал устройство, которое «позволяло дышать там, где воздух загрязнён вредными газами или парами, дымом или другими загрязнениями». Бернхард Леб запатентовал несколько устройств, которые «очищали загрязнённый или испорченный воздух», и их применяли пожарные Бруклина.

Один из первых задокументированных случаев попытки применения респираторов для защиты от пыли относится к 1871 году, когда фабричный инспектор Роберт Бейкер[5] попытался организовать их применение. Но респираторы были неудобные, и из-за увлажнения фильтра выдыхаемым воздухом он быстро забивался пылью так, что становилось трудно дышать, из-за чего рабочие не любили их использовать.[6]

В России, по сохранившимся письменным источникам, до начала Первой мировой войны, горноспасатели использовали импортные дыхательные аппараты Дрегера (Германия). Они также использовались после окончания  I Мировой войны горноспасателями, Автономный дыхательный аппарат.

Химическое оружие

Первым применением химического оружия было использование хлора под Ипром во время I Мировой войны. 22 апреля 1915 года немецкая армия выпустила 168 тонн хлора на участке фронта длиной 6 км. В течение 10 минут около 6000 человек погибло от удушья. Газ воздействовал на лёгкие и глаза, не давая дышать и ослепляя. Так как плотность газообразного хлора больше, чем у воздуха, он стремился спускаться в низины, заставляя солдат покидать окопы.

Первым зарегистрированным случаем использования респираторов для защиты от химического оружия стало использование канадскими солдатами, находившимися вдали от места его применения, пропитанной мочой ткани. Они поняли, что аммиак будет вступать в реакцию с хлором, а вода будет поглощать хлор, и это позволит дышать.

А в мае 1915 года химическое оружие применили против русской армии. Сначала для защиты использовали повязки со специальной пропиткой, а затем стали разрабатывать и применять различные противогазы.

Классификация

Классификация респираторов

Для защиты органов дыхания при разных загрязнениях воздуха изготавливаются респираторы разной конструкции и назначения: промышленные (индустриальные), военные, медицинские (например, для аллергиков или против гриппа) и др.

В продаже есть респираторы - фильтрующие полумаски - различных конструкций: формованая полумаска, конвертного типа (складные), неформованая фильтрующая полумаска. Изготавливаются фильтрующие полумаски 3 классов защиты (по проницаемости используемого фильтровального материала) FFP 1, FFP 2 и FFP 3 (ЕС и РФ). Они сертифицируются согласно требованиям стандарта в ГОСТ Р 12.4.191-99 «СИЗОД. Полумаски фильтрующие для защиты от аэрозолей». Ссылки на другие ГОСТы РФ для других конструкций респираторов есть в СИЗОД.

Выпускаются противоаэрозольные фильтрующие полумаски с дополнительной защитой от газообразных вредных веществ: кислых газов и паров неорганических веществ (хлор, диоксид серы, хлорид и фторид водорода), паров и газов органического происхождения (пары растворителей, бензинатолуола), паров основных веществ и основных газов (аммиакаминыанилин), и специальные фильтрующие полумаски для сварщиков, которые улавливают вредные газы.

Советские и российские респираторы

·  Респираторы «Лепесток»

·  Р-2 защищает органы дыхания от радиоактивной пыли. От паров и газов респиратор не защищает! Маска состоит из поролона и марли, а также имеет два клапана для вдоха и один клапан для выдоха.

·  РПГ-67 служит для защиты органов дыхания от паров и газов вредных веществ при концентрациях не превышающих предельно допустимые нормы более чем в 15 раз.

·  РПА-1 предназначен для защиты органов дыхания от пыли и аэрозолей в тяжёлых рабочих условиях.

·  РУ-60 м защищает от паров вредных веществ, а также от пыли и аэрозолей (не защищает от высокотоксичных примесей (синильная кислота и прочее)).

Для защиты органов дыхания от паров и газов на респираторы РПГ-67 и РУ-60 м устанавливаются различные фильтры, срок службы которых зависит от концентрации вредных веществ, условий работы и других обстоятельств (см. Противогазные фильтры ниже). Масса этих респираторов около 300 гр. Сейчас в продаже имеется большое число различных респеираторов разных конструкций, изготовленных в РФ и импортируемых продавцами.

Испытания респираторов в производственных условиях

За последние несколько десятилетий в развитых странах проводились многочисленные испытания респираторов разных моделей непосредственно в производственных условиях (Испытания респираторов в производственных условиях). Для этого на поясе рабочего закрепляли 2 пробоотборных насоса и фильтры, и во время работы одновременно измеряли загрязнённость воздуха под маской респиратора и снаружи неё — вдыхаемого и окружающего воздуха. Концентрация вредных веществ под маской позволяет оценить их фактическое воздействие на рабочего, а деление средней наружной концентрации на подмасочную позволяет определить «коэффициент защиты» респиратора в производственных условиях. Важно отметить, что уже много лет специалисты чётко различают два разных коэффициента защиты:

·  Производственный коэффициент защиты (Workplace Protection Factor) — отношение наружной концентрации к подмасочной при непрерывной носке респиратора во время измерений.

·  Эффективный коэффициент защиты (Effective PF) — когда рабочий может снимать, сдвигать и поправлять маску — как и происходит на практике.

Производственный коэффициент защиты — это показатель защитных свойств самого респиратора в производственных условиях, а эффективный ЭКЗ позволяет оценить последствия его применения для здоровья рабочих. Например, если производственный коэффициент защиты = 500, а во время работы что бы что-то сказать рабочий снимал респиратор, то 5 минут разговора за 8 часов (480 минут) дадут значение эффективного коэффициента защиты = 80 — в 6 раз меньше, чем производственный КЗ.

Измерения и результаты

Перед измерениями производственного коэффициента защиты рабочих предупреждают о недопустимости снимания респираторов. После одевания маски специальным оборудованием измеряют количество просачивающегося под неё нефильтрованного воздуха (через зазоры между маской и лицом). Если оно превышает допустимое, то рабочий не участвует в измерениях. Во время замеров за рабочими непрерывно наблюдают — не снимают ли они респираторы. При измерении ЭКЗ непрерывное наблюдение не проводится.

Эти испытания показали, что у одинаковых респираторов, используемых в одинаковых условиях значения коэффициента защиты могут отличаться в десятки, сотни и тысячи раз. Более того, при использовании нового измерительного оборудования установили, что при непрерывной носке респиратора и непрерывном измерении его коэффициента защиты последний способен изменяться в десятки раз за считанные минуты (Рис. 1). Чем можно объяснить такое непостоянство?

Чтобы респиратор предотвратил попадание вредных веществ в органы дыхания, необходимо:

1.                      Изолировать, отделить органы дыхания от окружающей загрязнённой воздушной среды. Для этого используют различные лицевые части (полумаски, полнолицевые маски и т. д.).

2.                      Нужен чистый или очищенный воздух для дыхания. В фильтрующих респираторах загрязнённый воздух очищается противоаэрозольными и/или противогазными фильтрами.

Нарушение хотя бы одного из этих условий ухудшает защитные свойства СИЗОД.

Полученные результаты измерений (Рис. 2) позволили специалистам сделать следующие выводы:

·  Коэффициент защиты респиратора — случайная величина; он может изменяться в очень широких пределах при использовании одинаковых респираторов высокого качества в одинаковых условиях.

·  В производственных условиях коэффициент защиты слабо зависит от качества фильтров, которое постоянно. Значит, разнообразие полученных результатов объясняется прониканием неотфильтрованного воздуха через зазоры между маской и лицом.

·  Перед проведением измерений производственного КЗ просачивание неотфильтрованного воздуха через зазоры измерялось, и рабочие, у которых оно достигало 1 % (КЗ=100) не допускались к испытаниям. Во время работы за рабочими непрерывно наблюдали. Поэтому наименьшие из полученных результатов (например — КЗ=2) объясняются сползанием правильно одетых масок уже во время работы.

·  Значения эффективного КЗ в среднем ниже, чем производственного КЗ. Их величина зависит (дополнительно) от того, могут ли рабочие использовать респираторы непрерывно (необходимость разговаривать, высокая температура в цеху и т.д), и от организации применения респираторов на предприятии (тренировки и т. п.).

·  Даже точная информация и о загрязнённости воздуха, и о респираторе не позволяет определить (теоретически) последствия применения СИЗОД для здоровья рабочих.

Непостоянство коэффициента защиты возникает не только при сравнивании КЗ у разных рабочих, но и у одного и того же рабочего при использовании одного и того же респиратора: в разные дни КЗ могут быть разными. Например, в исследовании (2) у рабочего № 1 при выполнении работы один раз получился КЗ = 19, а в другой раз — 230 000 (Рис. 2, круглые закрашенные зелёные маркеры). У рабочего № 12 (там же) один раз получился КЗ = 13, а в другой раз — 51 400. Причём использовались одинаковые респираторы — непрерывно (за каждым из рабочих постоянно наблюдали во время измерений, респиратор не снимался), и перед началом измерений проверили — правильно ли одета маска. Нужно заметить, что все рабочие, у кого под полумаску просачивалось более 1 % неотфильтрованного воздуха, к участию в исследовании не допускались. Это соответствует КЗ = 100. Но по крайней мере в половине случаев правильно одетый респиратор «сполз» во время работы — ведь рабочий не стоял на месте, а двигался. Это «сползание» сильно зависит от соответствия маски лицу рабочего — по форме и по размеру.

Поэтому коэффициент защиты респиратора в производственных условиях — случайная величина, которая зависит от разных обстоятельств.

·  Разнообразие значений КЗ может объяснить, почему при использовании одинаковых респираторов в одинаковых условиях рабочими, выполняющими одинаковую работу один может быстро стать инвалидом, а другой — выйти на пенсию без признаков профзаболевания.

Поскольку респираторы используются для предотвращения профзаболеваний (должны, по крайней мере), то как это разнообразие повлияет на воздействие вредных веществ на рабочего — на среднее воздействие? Предположим, что загрязнённость воздуха стабильна — 10 ПДК. Пусть при использовании респиратора в течение 4 дней степень защиты (КЗ) 3 дня была 230 000 (Рис. 2 зелёный маркер), а один день — 2.2 (Рис. 2 красный маркер). С При таком непостоянстве для уменьшения среднего воздействия на рабочего максимальные значения не имеют никакого значения, а минимальные — очень важны. Поэтому для предотвращения профзаболеваний имеют значение не достижение максимальных значений КЗ, а предотвращение снижения КЗ до минимальных значений.

Что влияет на снижение защитных свойств респиратора

Используется ли респиратор непрерывно

Высокая температура. Например, все нижние фиолетовые маркеры оказались левее 10, и половина из них находится левее КЗ=2. При проведении этого измерения (3) на заводе, изготавливавшем кокс, температура воздуха была слишком высокой. Вероятно, рабочие не выдерживали, и снимали респираторы слишком часто. Исследователи порекомендовали работодателю устроить общеобменную вентиляцию (для снижения температуры и загрязнённости воздуха), и использовать респираторы с принудительной подачей воздуха (так как обдув лица улучшает самочувствие). См. (1, стр. 174)

Необходимость разговаривать. В исследовании (4) измерялись защитные свойства респираторов — полнолицевых масок 3М 6000. Было сделано 67 замеров. В 52 обработанных случаях самый маленький КЗ был не меньше 100, что гораздо больше, чем ограничение области применения такого респиратора (в США — 50 ПДК). Но из 15 необработанных замеров в 13 случаях была повреждена измерительная система, а в 2 — рабочие снимали респираторы во время работы, чтобы что-то сказать. Измерять коэффициент защиты неодетого респиратора бессмысленно, но это важно учитывать для сбережения здоровья рабочих. В исследовании участвовали добровольцы; их предупредили, что снимать маски нельзя; они знали, что за ними непрерывно следят, но респираторы — сняли. Значит это требовало выполнение работы. А если менее чем за 2 часа (средняя продолжительность замера) 2 человека из 54 сняли респираторы, сколько их будет за смену? У 3М 6000 нет переговорной мембраны, но если в помещении шумит оборудование, то и при наличии мембраны трудно докричаться друг до друга. Изготавливаются переговорные устройства — акустические и радио.

Удобность респиратора. Трудно ожидать, что неудобный респиратор будет использоваться 8 часов в день. В США рабочему дают возможность выбрать наиболее удобную маску из нескольких. (В (1), стр. 239 указано — минимум 2 разных модели по 3 размера у каждой). Специалисты рекомендуют заменять выбранную маску на другую, если в течение 2-х первых недель она покажется неудобной (1, стр. 99).

Конструкция и принцип действия респиратора

У респираторов — полнолицевых масок (при правильном выборе и применении) зазоры образуются в среднем реже и меньшие, чем у полумасок. Поэтому их область допустимого применения ограничили 50 ПДК, а полумасок — 10 ПДК (США). А если подавать под маску воздух принудительно, чтобы давление было выше наружного, то воздух в зазорах будет двигаться наружу, мешая загрязнениям попадать внутрь. Поэтому в развитых странах стандарты ограничивают применение респираторов разной конструкции по разному, хотя в отдельных случаях защитные свойства могут быть и другие. Например, КЗ полумаски в каких-то случаях может быть больше, чем у полнолицевой маски и у респиратора с принудительной подачей воздуха (ППВ).

Ограничения по применению респираторов действительны только тогда, когда маска соответствует лицу рабочего (после индивидуального подбора и проверки прибором), и респиратор применяется непрерывно (там, где воздух загрязнён). В развитых странах такие ограничения закреплены в действующем законодательстве - обязательных для выполнения (работодателем) стандартах, регулирующих выбор и организацию применения респираторов.

Соответствие маски лицу

Чтобы маска респиратора была удобной, и соответствовала лицу рабочего по форме и размеру, рабочему не выдаётся респиратор, а дают возможность самому выбрать наиболее подходящую и удобную маску из нескольких предложенных. Затем прибором проверяется, имеются ли у выбранного респиратора зазоры между маской и лицом. Это можно сделать различными способами. Самые простые из них заключается в распылении перед лицом рабочего (одевшего респиратор) раствора сладкого или горького вещества, безвредного для здоровья (Fit Test — saccharin, Bitrex) (1, стр. 71, 96, 255). Если рабочий при одетом респираторе почувствовал вкус — значит, есть зазоры. Он должен выбрать другой, более подходящий респиратор. А если маска соответствует лицу, то она меньше склонна сползать во время работы. Проверка изолирующих свойств респираторов  требуется в связи с тем, что у людей разных рас есть систематические различия в форме лица, которое должны учитывать изготовители респираторов и покупатели.

Подвижность выполняемой работы

При применении респираторов одного типа они обеспечивают разную степень защиты при их использовании в разных условиях на разных предприятиях. Это отличие связано с тем, что при выполнении разных видов работ сотрудникам приходится выполнять разные движения, которые по-разному ухудшают защитные свойства респираторов. Например, проводилось исследование защитных свойств полнолицевых масок при движении шагом по беговой дорожке при большой нагрузке (21). Из-за сильного потовыделения КЗ снизились, в среднем, с ~82 500 до ~42 800. При сертификации этих респираторов они обеспечивают степень защиты не ниже 1000 — для испытателя, который медленно идёт по беговой дорожке, плавно поворачивая голову. В исследовании (4) КЗ респиратора с полнолицевой маской в производственных условиях снизилось примерно до 300—100. Область их допустимого применения в США — 50 ПДК. А в лаборатории были получены значения КЗ(min) = 25-30 — Рис. 4. (20).

Поэтому огромное значение имеет механизация работ — это не только уменьшает число людей, подвергающихся вредному воздействию, но также может сильно повысить реальные защитные свойства респираторов.

Качество респираторов

Неоднократные сравнительные испытания нескольких десятков различных респираторов — полумасок, проводившиеся в США, постоянно показывали, что степень защиты сертифицированных респираторов одного класса и одной конструкции при их правильном использовании одними и теми же людьми может сильно отличаться. Например, эластомерные полумаски (3М 7500, Survivair 2000, Pro-tech 1490/1590 и др.) и фильтрующие полумаски (3М 9210, Gerson 3945 и др.) стабильно обеспечивали КЗ > 10, в то время как некоторые другие респираторы (Alpha Pro Tech MAS695, MSA FR200 affinity и др.) при их носке теми же людьми не могли обеспечить КЗ больше 10 даже в половине случаев их применения.

Защитные свойства респиратора и его стоимость — разные вещи, которые часто совсем не зависят друг от друга.

Правильное применение

Правильное применение респираторов обученным персоналом так же важно, как и качество самого респиратора. Для этого рабочие проходят обучение, а ответственный за респираторную защиту следит за правильностью применения респираторов. В исследовании (6) изучались ошибки при одевании фильтрующих полумасок, которые использовали необученные люди. Было одето неправильно 24 % респираторов. 7 % участников не согнули носовую пластинку, а каждый пятый (из тех, кто ошибся) одел респиратор вверх ногами. В исследовании (7) не подготовленные люди смогли правильно одеть респираторы (без обучения, тренировок и индивидуального подбора) в 3-10 % случаев. Законодательство США и других развитых стран обязывает работодателя обучать и тренировать рабочих и перед началом работы в респираторе, и после этого — периодически (1, стр. 69, 224, 252). Например, после одевания рабочий должен каждый раз проверять — правильно ли одет респиратор, используя проверку правильности одевания респиратора (1, стр. 97, 227, 252, 271).

Замена противогазных фильтров

При использовании респираторов с противогазными фильтрами работодатель обязан своевременную заменять их. Замена фильтра «когда рабочий почувствует запах, вкус» (или, допустим, потеряет сознание) не допускается, так как часть вредных веществ нельзя обнаружить по запаху при концентрации, выше ПДК, и у разных людей разная чувствительность (1, стр. 40,142, 159, 202, 219). См. раздел о противогазных фильтрах ниже.

Области допустимого применения респираторов-полумасок, по рекомендациям советских, российских и американских специалистов. Видно, что рекомендации российских и советских авторов не согласуются друг с другом (для одинаковых моделей СИЗОД), и могут на два порядка превышать научно обоснованные рекомендации американских специалистов, основанные на измерениях защитных свойств именно в производственных, а не в лабораторных условиях

Ответственность

В США и др. и работодатель, и изготовитель СИЗОД несут ответственность за сбережение здоровья рабочих. Там много лет существуют стандарты, которые регулируют и выбор респиратора в зависимости от условий работы, и организацию применения респираторов (медосмотр (1, стр. 68, 145, 162, 242) обучение, тренировки, техобслуживание и т. д.). Поскольку реальный эффект от применения респираторов зависит от большого числа разных факторов, то для эффективного применения респираторов все эти проблемы нужно решать вместе, комплексно. Законодательство обязывает защищать здоровье рабочих не выдачей респираторов, а выполнением комплексной и написанной программы респираторной защиты (см. статью Законодательное регулирование выбора и организации применения респираторов). В неё входит: определение загрязнённости воздуха, выбор респираторов, индивидуальный подбор маски для каждого рабочего, обучение и тренировки рабочих, контроль за правильностью применения (1, стр. 63, 91, 238). Для выполнения программы работодатель обязан назначить человека, который отвечает за решение всех вопросов, связанных с респираторной защитой. Наличие написанной программы облегчает инспекторам проведение проверок и выяснение причин повреждения здоровья. Исследование (8) показало, что на крупных предприятиях нарушений правил немного.

При правильном выборе респираторов хорошего и нормального качества, их индивидуальном подборе (соответствие лицу рабочего) и правильном применении обученными и тренированными сотрудниками в рамках полноценной программы респираторной защиты вероятность повреждения здоровья крайне низкая.

Но поскольку респираторы не могут гарантировать, что их степень защиты всегда, в 100 % случаев будет достаточно высокой, и из-за «человеческого фактора» при их применении и стандарты США и ЕС, и Санитарные Правила (10) РФ требуют использовать все возможные способы снижения вредного воздействия — автоматизацию, вентиляцию и т. п. — даже тогда, когда не удастся снизить загрязнённость воздуха до ПДК.

К сожалению, в РФ нет нормативных документов, регулирующих выбор и организацию использования СИЗОД работодателем, но есть рекламные и ничем не обоснованные рекомендации, систематично и значительно завышающие защитные свойства СИЗОД - на протяжении нескольких десятков лет. Это способствует выбору и использованию заведомо недостаточно эффективных респираторов, что приводит к развитию профзаболеваний (и отравлениям). На рисунке справа вверху показаны рекомендации для респираторов-полумасок - одних и тех же моделей (сделанные специалистами СССР, РФ и США).

Использование противогазных фильтров

Применение респираторов для защиты от вредных газов

При работе в атмосфере, загрязнённой вредными газами, для защиты здоровья рабочих используют респираторы с противогазными фильтрами. В тех случаях, когда противогаз оказывается не способным обеспечить рабочего чистым воздухом, могут возникнуть различные профзаболевания органов дыхания и др. — в зависимости от химического состава вредных газов. Среди других профзаболеваний в РФ заболевания органов дыхания занимают одно из первых мест. Чем это можно объяснить?

Однократное использование противогазных фильтров

При использовании фильтрующих противогазов для обеспечения рабочего воздухом, пригодным для дыхания, используется окружающий воздух, который очищается противогазными фильтрами. Часто для этого используют фильтры, корпус которых наполнен различными сорбентами. При прохождении воздуха через сорбент вредные газы поглощаются сорбентом, он насыщается ими, а воздух очищается. После насыщения сорбент утрачивает способность поглощать вредные газы, и они проходят дальше — к новым, свежим слоям сорбента. После того, как сорбент насытился в достаточно сильно, загрязнённый воздух начинают проходить через фильтр плохо очищенным, и вредные газы попадают под маску при большой концентрации. Таким образом, при непрерывном использовании срок службы фильтра ограничен, и он зависит от концентрации и свойств вредных газов, сорбционной ёмкости фильтра и условий его использования (расход воздуха, влажность и т. д.) а также правильного хранения. При не своевременной замене фильтра воздействие вредных газов на рабочего превысит допустимое, что может привести к повреждению здоровья.

На защитные свойства респираторов влияют много разных факторов, поэтому для надёжной защиты здоровья рабочих в развитых странах применение респираторов происходит в рамках комплексной программы респираторной защиты. Для этого там разработаны и применяются нормативные документы (стандарты), регулирующие выбор и организацию применения респираторов: (11) — США, (18) — Канада, (14) — Австралия (17) — Англия и др. Эти стандарты обязывают работодателя проводить своевременную замену противогазных фильтров, для чего при непрерывной носке предлагается следующее:

·  1. Используя результаты измерения загрязнённости воздуха, условиях применения и информацию о свойствах фильтра специалист, руководящий выполнением программы респираторной защиты, составляет расписание замены фильтров. Для этого изготовители предоставляют необходимую информацию о фильтрах или даже бесплатное программное обеспечение  Такая же информация предоставляется и Институтом охраны труда NIOSH. NIOSH даёт сведения о защитных свойствах конкретных фильтров и информацию о том, как пересчитать эти данные для фильтров с другими свойствами.

Если потребитель хочет, он может использовать таблицы со значениями срока службы фильтра, рассчитанными для конкретных условий использования.

Это позволяет определить срок службы фильтра с погрешностью, зависящей от точности исходных данных, и достаточно своевременно менять фильтры.

·  2. По мере насыщения сорбента концентрация вредных газов на выходе из фильтра возрастает, но это происходит постепенно. Это позволило разработать индикаторы окончания срока службы фильтра (ESLI, End of Service Life Indicator), которые срабатывают раньше, чем концентрация вредных газов на выходе из фильтра достигнет предельно допустимой (1, стр. 219). В США разработаны требования к таким индикаторам, обеспечивающие их безопасное применение. А соблюдение этих требований изготовителями СИЗОД позволяет рабочим менять фильтры своевременно и использовать респираторы, не рискуя здоровьем (например — фильтры 3М 6009[17] и 60929[18] с индикатором, меняющим цвет).

·  3. Вдыхание вредных газов может вызывать реакцию органов чувств рабочего (запах, раздражение т.д.). Исследования (1, стр. 159) показали, что такая реакция зависит от большого числа разных факторов (химический состав вредных газов, их концентрация, индивидуальная восприимчивость рабочего, его состояние здоровья, характер выполняемой работы и то, насколько быстро возрастает концентрация вредных газов во вдыхаемом воздухе, знаком ли человеку этот запах). Например, по исследованиям (15) у разных людей разный порог восприятия запаха одного и того же вещества. Для 95 % людей он находится между верхним и нижним пределами, которые отличаются от «среднего» значения в 16 раз (в большую и меньшую стороны). Это означает, что 15 % людей не почувствуют запах при концентрации, в 4 раза большей, чем порог чувствительности. Это также способствует тому, что в разных источниках могут быть разные значения порога восприятия запаха. В (1, стр. 220) указано, что на восприятие запаха влияет и состояние здоровья — небольшой насморк может снизить чувствительность. Если концентрация вредных газов под маской будет возрастать постепенно (как это и происходит при насыщении сорбента), то у рабочего может произойти постепенное привыкание, и реакция на просачивание вредных газов произойдёт при концентрации, заметно превышающей концентрацию вредных газов при её резком возрастании. Если выполняемая работа требует повышенного внимания, это тоже снижает порог восприятия запаха. Вероятно, степень алкогольной интоксикации тоже влияет на восприимчивость, но точных количественных сведений найти не удалось.

Это приводит к тому, что рабочий может начинать реагировать на вдыхание вредных газов при их различной концентрации. Можно ли использовать такую реакцию для своевременной замены фильтров?

Существуют вредные газы, не имеющие практически никакого вкуса и запаха при концентрации, значительно превышающей ПДК (например — угарный газ СО). В этом случае такой способ замены фильтров недопустим. Существуют вредные газы, у которых «средний» порог восприятия заметно выше, чем ПДК. Ниже приводится перечень некоторых таких веществ с указанием их номера (CAS) и концентрации (С) выраженной в ПДК, при которой люди обычно начинают реагировать на их вдыхание. Значения ПДК и среднего порога восприятия (С) взяты из (13), и из-за отличий в величинах ПДК в США и РФ могут не всегда совпадать со значениями, которые получились бы при использовании информации их русскоязычных источников.

Поэтому при работе с этими и другими подобными веществами использовать реакцию рабочего на вдыхание вредных веществ (запах) тоже нельзя — многие рабочие почувствуют запах слишком поздно.

Если вещества, у которых средний порог восприятия запаха ниже ПДК. Можно ли в таком случае использовать реакцию рабочего для своевременной замены фильтров?

В США в 1987 году это допускалось (1, стр. 143), но при этом требовали, чтобы перед тем, как сотрудник приступит к работе (требующей применения респиратора), работодатель должен проверить индивидуальный порог восприятия запахов именно у этого сотрудника, дав ему понюхать вредный газ при безопасной концентрации. А при отсутствии у вредных газов «предупреждающих» свойств (запаха, раздражения и т. д.) использование фильтрующих респираторов запрещалось.

Но в 2004 году точка зрения специалистов по охране труда изменилась (1, стр. 219). Использовать реакцию рабочих на вдыхание вредных веществ для своевременной замены фильтров теперь не рекомендуется, и сейчас стандарты США не допускают замену противогазных фильтров по реакции рабочего на вдыхание вредных веществ.

Так как попадание вредных веществ под маску может произойти не только через фильтры, но и через зазоры между маской и лицом (например — из-за сползания маски во время работы и т. п.), то в этом случае реакция рабочего на вдыхание вредных веществ позволит вовремя заметить опасность и покинуть опасное место.

Неоднократное использование противогазных фильтров

В тех случаях, когда использование фильтра прекратилось раньше, чем концентрация вредных газов на выходе из фильтра достигла предельно допустимой, в нём имеется неизрасходованный сорбент. Такая ситуация может возникнуть при использовании фильтра кратковременно или при слабой загрязнённости воздуха. Исследования (12 и др.) показали, что при хранении такого фильтра часть вредных газов, уловленных ранее сорбентом, может освободиться, и концентрация газов внутри фильтра у входного отверстия возрастёт. В середине и у выходного отверстия фильтра произойдёт то же самое — но из-за меньшего насыщения сорбента в меньшей степени. Из-за различия в концентрации газов их молекулы начнут двигаться внутри фильтра от входного отверстия к выходному, перераспределяя вредное вещество внутри фильтра. Этот процесс зависит от разных параметров — «летучести» вредного вещества, длительности хранения и условий хранения и др. Это может привести к тому, что при повтором использовании такого не до конца израсходованных фильтра концентрация вредных веществ в воздухе, прошедшем через него, станет выше предельно допустимой сразу. Поэтому при сертификации противогазных фильтров, предназначенных для защиты от веществ с температурой кипения менее 65 °C стандарты требуют проведения проверки десорбции (16). В РФ стандарт (9) такую проверку не предусматривает.

Чтобы сберечь здоровье рабочих, законодательство США не допускает повторного использования противогазных фильтров для защиты от «летучих» вредных веществ, даже если при их первом использовании сорбент насытился частично.

Согласно стандартам «летучими» считаются вещества с температурой кипения ниже 65 °C. Но исследования показали, что и при температуре кипения больше 65 °C повторное использование фильтра может оказаться небезопасным. В статье (12) приводится порядок расчёта концентрации вредных веществ в момент начала повторного использования фильтров, но эти результаты пока не нашли отражения ни в стандартах, ни в руководствах по применению респираторов, составленных изготовителями (где также запрещается повторное использование). Интересно отметить, что автор статьи, работающий в США, не попытался рассмотреть возможность использования противогазного фильтра в третий раз.

Работа в атмосфере, в которой концентрация вредных газов мгновенно опасна для жизни или здоровья

Попадание вредных газов под маску может вызвать не только хронические заболевания. Даже кратковременное вдыхание вредных веществ при достаточно большой концентрации может привести к смерти или необратимому повреждению здоровья, а воздействие на глаза может помешать покинуть опасное место. При своевременной замене противогазных фильтров это может случиться при образовании зазора между маской и лицом — если при вдохе давление воздуха под маской ниже атмосферного. Измерения защитных свойств респираторов, проводившиеся в производственных условиях, показали, что на практике степень защиты — случайная величина, и что во время работы у респираторов без избыточного давления под маской степень защиты может уменьшаться до очень маленьких значений.

Поэтому стандарты развитых стран, регулирующие выбор и организацию применения респираторов, обязывают работодателя обеспечивать рабочего респираторами с принудительной подачей воздуха под маску, чтобы давление во время вдоха было выше атмосферного. Для этого используется автономный источник воздуха или подача чистого воздуха по шлангу (если такое ограничение подвижности допустимо). В последнем случае, для безопасного покидания места работы при перебоях в подаче воздуха, у рабочего должен быть автономный источник чистого воздуха достаточно большой ёмкости (1).

При сильной загрязнённости воздуха применение фильтрующих респираторов не рекомендуется — даже если концентрация вредных веществ не представляет мгновенной опасности для жизни или здоровья (1). Кроме того, при использовании фильтрующих противогазов при сильной загрязнённости воздуха может потребоваться частая замена фильтров, которые стоят недёшево. В таких случаях может оказаться более выгодным использование респираторов с подачей чистого воздуха по шлангу под давлением.

Даже при правильном выборе и применении респираторов обученными рабочими они не могут гарантировать абсолютно надёжную защиту, и поэтому и (10) в РФ, и законодательство развитых стран требуют использовать все возможные способы снижения загрязнённости воздуха. Только после этого для защиты здоровья рабочих используют противогазы.

В настоящее время в РФ нет нормативных документов, обязательных для выполнения, которые бы регулировали выбор и организацию применения СИЗОД — в том числе выбор и своевременную замену противогазных фильтров и возможность их повторного применения. Не регулируются выбор лицевой части респиратора, использование респираторов с принудительной подачей воздуха под маску, обучение и тренировка рабочих. Из-за этого невозможно разработать учебники и другие учебные материалы для подготовки специалистов по охране труда и рабочих, и сдерживается применение в РФ уже готовых западных разработок. Отсутствие подготовки по этому направлению у инспекторов Роспотребнадзора, Государственной инспекции труда и профсоюзных организаций может снизить эффективность их работы до нуля.

Другие статьи
  • Летняя рабочая спецобувь: особенности
    Лето - время, когда работа на открытом воздухе становится особенно интенсивной. Высокие температуры, влажность и разнообразные трудовые задачи требуют надежной и удобной защиты для ног. Летняя рабочая спецобувь - это именно то, что нужно для обеспечения безопасности и комфорта в условиях летнего сезона.
  • Летняя спецодежда: залог комфорта в жаркую погоду
    Летняя рабочая спецодежда - это незаменимый элемент защитного снаряжения, который обеспечивает безопасность и комфорт работников в условиях жаркой погоды. Компания АзияСпец предлагает широкий ассортимент летней спецодежды по доступным ценам, обеспечивая надежную защиту и высокий уровень комфорта.